Volltextdatei(en) vorhanden
DC ElementWertSprache
dc.contributor.advisorHartmann, Jens (Prof. Dr.)
dc.contributor.authorBörker, Janine
dc.date.accessioned2020-10-19T13:24:06Z-
dc.date.available2020-10-19T13:24:06Z-
dc.date.issued2019
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/8306-
dc.description.abstractThe quantification of chemical weathering fluxes plays an important role for many processes in the Earth system. Chemical weathering regulates, for example, the pCO2 in the atmosphere over long geological time scales, influences the ocean carbon cycle or releases nutrients that are then available for ecosystems. Chemical weathering is dependent on several parameters, like water fluxes, temperature or the type of lithology. Most weathering models distinguish between carbonate and silicate weathering. In order to quantify the proportion and distribution of carbonates and silicate rocks on the global land surface, global lithological maps are the basis for the research. A continuous improvement of these maps is needed to further enhance weathering models. For this purpose a new global map database was developed, that reports on the distribution and types of unconsolidated sediments, which covers in this map approximately half of the global land surface. The Global Unconsolidated Sediments Map database (GUM) comprises 911,551 polygons and provides information about sediment types and subtypes, grain sizes, mineralogy, age and thickness of the sediments. The GUM allowed for analyzing the weathering behavior of loess sediments, which are highly dynamic eolian sediments. It could be shown that loess sediments show a similar weathering pattern than carbonate sedimentary rocks and a new parameterization for loess-derived alkalinity fluxes was developed. By applying this new function, the global alkalinity flux rates increase by about 16% as if compared to neglecting loess sediments. Subsequently, the alkalinity fluxes of loess deposits were quantified for the Last Glacial Maximum and the Mid-Holocene as well. It could be shown that increased alkalinity fluxes from loess deposits during the LGM are compensating for the general decreased alkalinity fluxes derived by silicate weathering and are hence keeping the global alkalinity fluxes stable between glacial-interglacial time scales. In the third part of this thesis, the quantification of alkalinity fluxes from basaltic regions was improved by considering not only temperature, but also the age of the surface basaltic rocks. A study of alkalinity fluxes from 33 basaltic volcanic areas shows that active Holocene basaltic areas provide ~10 times higher alkalinity flux rates than inactive volcanic fields. This observation led to the development of a new scaling law that increases global CO2 consumption rates by the consideration of young volcanic systems by about 60%. This thesis shows that global weathering models still can be improved. Enhanced global lithological maps, providing different kinds of information about sediments and rocks are needed to better understand regional and local processes and to be able to upscale them properly to the global scale. By applying enhanced maps, it could be shown that loess sediments and young basaltic volcanic fields increase global alkalinity fluxes, which could be especially interesting for past times in the Earth’s history, since both, loess sediments and volcanoes, are highly dynamic in their evolution.en
dc.language.isoenen
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectgeochemistryen
dc.subjectcarbon cycleen
dc.subjectweatheringen
dc.subjectlithological mapsen
dc.subject.ddc550 Geowissenschaften
dc.titleQuantifications of global chemical weathering fluxes applying new lithological maps and new parameterizationsen
dc.title.alternativeQuantifizierungen globaler chemischer Verwitterungsflüsse unter Verwendung neuer lithologischer Karten und neuer Parameterisierungende
dc.typedoctoralThesis
dcterms.dateAccepted2019-05-21
dc.rights.ccNo license
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.bcl38.32 Geochemie
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisdoctoralThesis
tuhh.opus.id9919
tuhh.opus.datecreation2019-08-14
tuhh.type.opusDissertation-
thesis.grantor.departmentGeowissenschaften
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionUniversität Hamburg
dcterms.DCMITypeText-
tuhh.gvk.ppn1676123121
dc.identifier.urnurn:nbn:de:gbv:18-99192
item.advisorGNDHartmann, Jens (Prof. Dr.)-
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.creatorOrcidBörker, Janine-
item.creatorGNDBörker, Janine-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation.pdf08535689a49d9aa4ea688e5311a13e677.11 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

280
Letzte Woche
Letzten Monat
geprüft am 26.04.2024

Download(s)

125
Letzte Woche
Letzten Monat
geprüft am 26.04.2024
Werkzeuge

Google ScholarTM

Prüfe