DC ElementWertSprache
dc.contributor.advisorGrüner, Florian-
dc.contributor.authorKörnig, Christian Gabriel-
dc.date.accessioned2022-11-29T12:34:05Z-
dc.date.available2022-11-29T12:34:05Z-
dc.date.issued2022-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/9938-
dc.description.abstractX-ray-fluorescence imaging (XFI) is an emerging functional imaging modality promising benefits for tumor detection, cell-tracking and pharmacokinetics. When matter is irradiated by an external x-ray beam, fluorescence photons in the x-ray regime characteristic for the elemental composition are emitted. By using non-endogenous high- or medium-Z elements as markers, this principle can be employed in a functional imaging modality. One challenge in this method is separating the fluorescence photons from background events, mostly created by Compton scattering. For achieving the highest sensitivities in XFI, a mono-energetic incident beam is thus needed, making synchrotrons the ideal x-ray source for XFI. However, the special characteristics of a synchrotron beamline have to be taken into account for the design of the experimental setup. In the scope of this thesis, a series of pilot studies were performed to understand and optimize all aspects required to apply the principle of XFI to synchrotron-based in-vivo immune cell tracking at the P21.1 beamline at the Petra III synchrotron. Furthermore, a new reconstruction method is investigated which allows to reduce the radiation dose of three-dimensional spatial imaging of the fluorescence marker distribution. Combining the results, three-dimensional reconstruction of organ concentrations down to 650 ng/ml at in-vivo conform radiation levels are achievable, promising to allow tracking multiple types of cells simultaneously.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subject.ddc530: Physikde_DE
dc.titlePilot Studies for Quantitative 2D and 3D X-Ray Fluorescence Imagingen
dc.typedoctoralThesisen
dcterms.dateAccepted2022-11-21-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl33.05: Experimentalphysikde_DE
dc.subject.gndRöntgenfluoreszenzspektroskopiede_DE
dc.subject.gndBildgebendes Verfahrende_DE
dc.subject.gndPhysikde_DE
dc.subject.gndSynchrotronde_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentPhysikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
datacite.relation.IsSupplementedBydoi:10.1038/s41598-022-06786-4de_DE
dc.identifier.urnurn:nbn:de:gbv:18-ediss-104781-
item.advisorGNDGrüner, Florian-
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.creatorOrcidKörnig, Christian Gabriel-
item.creatorGNDKörnig, Christian Gabriel-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
DissertationChristianKoernig.pdf2a647ef756ecb7195f6f5c564ce19d4510.81 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

139
Letzte Woche
Letzten Monat
geprüft am 25.04.2024

Download(s)

83
Letzte Woche
Letzten Monat
geprüft am 25.04.2024
Werkzeuge

Google ScholarTM

Prüfe