DC ElementWertSprache
dc.contributor.advisorZhang, Jianwei-
dc.contributor.authorShi, Yunlei-
dc.date.accessioned2023-04-17T07:49:54Z-
dc.date.available2023-04-17T07:49:54Z-
dc.date.issued2023-01-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/10197-
dc.description.abstractThis thesis explores learning frameworks for collaborative robots in assembly operations. Reinforcement Learning (RL) with visual and haptic information tackles target uncertainty, while proactive actions improve policy learning. Another framework combines visual servoing-based Learning from Demonstration (LfD) and force-based Learning by Exploration (LbE) for efficient programming. Lastly, a sim-to-real transfer learning framework addresses sample efficiency and safety concerns, using CycleGAN and force control transfer for successful real-world adaptation.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subject.ddc004: Informatikde_DE
dc.titleVisual and Force-Driven-Based Assembly Learning Using Collaborative Robotsen
dc.typedoctoralThesisen
dcterms.dateAccepted2023-03-31-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentInformatikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-108351-
item.creatorOrcidShi, Yunlei-
item.creatorGNDShi, Yunlei-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.advisorGNDZhang, Jianwei-
item.languageiso639-1other-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
PhD_Thesis_Yunlei_Shi.pdf29d5293f92df623b798598d8c6206da920.23 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

272
Letzte Woche
Letzten Monat
geprüft am 21.11.2024

Download(s)

629
Letzte Woche
Letzten Monat
geprüft am 21.11.2024
Werkzeuge

Google ScholarTM

Prüfe