DC ElementWertSprache
dc.contributor.advisorWehling, Tim-
dc.contributor.advisorRossi, Mariana-
dc.contributor.authorSchobert, Arne Hilwert Paul-
dc.date.accessioned2024-04-12T12:36:24Z-
dc.date.available2024-04-12T12:36:24Z-
dc.date.issued2023-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/10848-
dc.description.abstractThis dissertation explores downfolded models in condensed matter physics, emphasizing their role in understanding the interplay between electronic and lattice degrees of freedom, particularly within the low-energy domain. The research demonstrates that downfolded lattice models accurately reproduce Born-Oppenheimer potential energy surfaces of ab initio methods, while offering computational speedups of multiple orders of magnitude. This enables extensive molecular dynamics simulations and insights into charge density wave physics in real materials. Through collaborations between experiment and theory, the work challenges the understanding of conventional charge density wave physics by revealing nonlinear mode-mode coupling in materials like monolayer 1T-VS2 . It also confirms the existence of a charge density wave with unconventional electronic gap features in monolayer 1H-NbS2. Furthermore, it demonstrates how molecular dynamics simulations can be employed to determine the transition temperature of the charge density wave phase transition in monolayer 1H-TaS2 . In summary, this research advances charge density wave physics through interdisciplinary collaboration, while providing downfolded lattice models as a valuable tool for understanding dynamics and thermodynamics for systems beyond the charge density wave phenomenon. It opens avenues for exploring phase transitions, correlations, and quantum phenomena, showcasing the transformative potential of downfolded lattice models.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.relation.haspartdoi: 10.21468/SciPostPhys.11.4.079de_DE
dc.relation.hasparthttps://doi.org/10.1038/s41467-021-27094-xde_DE
dc.relation.haspartdoi: 10.21468/SciPostPhys.16.2.046de_DE
dc.relation.hasparthttps://doi.org/10.1021/acs.nanolett.3c02787de_DE
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectCDWde
dc.subjectDFTde
dc.subjectdownfoldingen
dc.subjectab initioen
dc.subject.ddc530: Physikde_DE
dc.titleFrom ab initio to downfolded lattice models: Exploring charge density wave physicsen
dc.typedoctoralThesisen
dcterms.dateAccepted2024-04-02-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl33.61: Festkörperphysikde_DE
dc.subject.gndTheoretische Physikde_DE
dc.subject.gndFestkörperphysikde_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentPhysikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
datacite.relation.IsSupplementedByhttps://doi.org/10.5281/zenodo.10514203de_DE
dc.identifier.urnurn:nbn:de:gbv:18-ediss-116914-
item.advisorGNDWehling, Tim-
item.advisorGNDRossi, Mariana-
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.creatorOrcidSchobert, Arne Hilwert Paul-
item.creatorGNDSchobert, Arne Hilwert Paul-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Prüfsumme GrößeFormat  
Dissertation_Arne_Schobert.pdfd5cc8b129bf4b75b62facfca20980b9139.15 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe