Titel: Do multidimensional representations of personality support learning?
Sprache: Englisch
Autor*in: Frolichs, Koen
Schlagwörter: Reinforcement Learning; Representational Similarity Analysis; Grid-Cells; Big-5; Abstraction; Generalization
GND-Schlagwörter: Fünffaktorenmodell der PersönlichkeitGND
Soziale NeurowissenschaftenGND
StrukturlernenGND
Kognitive NeurowissenschaftGND
Bestärkendes Lernen <Künstliche Intelligenz>GND
Erscheinungsdatum: 2024
Tag der mündlichen Prüfung: 2024-05-29
Zusammenfassung: 
In this thesis, I explored how humans learn about others’ personalities. First, from a behavioral perspective, I tried to understand the strategies underlying this learning, i.e., find out what information people use and how they apply it. To do this, I used reinforcement learning models
that are commonly used to explain learning across domains. I did not use these models on their own but added information structures that humans might use when learning about others. These models reveal that humans flexibly use complex knowledge structures when learning about others’ personalities. Based on these results, I next extended my focus from behavior to the brain. In recent years, developments in analysis techniques of functional brain data have allowed for queries into activity patterns rather than plain activations. Such analyses revealed multidimensional structures when learning about others’ personalities. I used these techniques to find out whether the cortex also
codes for even more complex information structures that I found in the behavioral study. In general, I found evidence that the brain represents these complex knowledge structures when learning about strangers’ personalities. Finally, in the most recent work, I focused on grid-cells, which represent a specific way for representing and coding information. First established in navigational space, grid-like coding patterns have also been found for conceptual spaces in two dimensions. I investigated a personality plane based on two trait words that form the axes of this ‘trait space’ but with the used analysis methods, I found no evidence for grid-like coding for this trait space.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/11067
URN: urn:nbn:de:gbv:18-ediss-119983
Dokumenttyp: Dissertation
Betreuer*in: Korn, Christoph
Schuck, Nicolas
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation_K.Frolichs.pdf4dcee19b4fe661f0a16dfdc7c5f62c2e7.15 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe