DC ElementWertSprache
dc.contributor.advisorIske, Armin-
dc.contributor.authorEntzian, Juliane-
dc.date.accessioned2024-11-26T13:34:35Z-
dc.date.available2024-11-26T13:34:35Z-
dc.date.issued2024-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/11287-
dc.description.abstractThis dissertation concerns adaptive kernel-based approximation methods. We create a toolbox for adapting kernels to underlying problems, focusing on the interpolation of multivariate scattered data with an emphasis on anisotropies. By developing five nonstandard classes of flexible kernels – transformation, summation, and product kernels, as well as the anisotropic versions of the latter two orthogonal summation, and tensor product kernels – significant limitations of traditional radially symmetric kernels are addressed. These classes, some entirely new and others building on existing structures, provide the flexibility to select and combine kernels tailored to specific problems. Thus, they extend the variety of interpolation methods. The theoretical analysis conducted on each kernel class’s native space not only expands the understanding of native spaces in general but also enlightens underlying (name-giving) structures and their associated benefits. We investigate the interpolation method for each kernel, including impacts on accuracy and stability. Numerical tests confirm the theoretical findings and show which kernel class is suitable for specific problem adaptations: We propose transformation or tensor product kernels for adapting to the point set; transformation kernels for adapting to the domain; and summation, transformation, or orthogonal summation kernels for adapting to the target function.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectReproducing Kernel Hilbert Spaceen
dc.subjectKernel-based Interpolationen
dc.subjectAnisotropic Kernelsen
dc.subjectAdapted Kernelsen
dc.subject.ddc510: Mathematikde_DE
dc.titleStructure Analysis of Nonstandard Kernels for Multivariate Reconstructionsen
dc.typedoctoralThesisen
dcterms.dateAccepted2024-10-17-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl31.76: Numerische Mathematikde_DE
dc.subject.gndRadiale Basisfunktionde_DE
dc.subject.gndApproximationde_DE
dc.subject.gndScattered-Data-Interpolationde_DE
dc.subject.gndHilbert-Raum mit reproduzierendem Kernde_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentMathematikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-123051-
item.creatorOrcidEntzian, Juliane-
item.creatorGNDEntzian, Juliane-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.advisorGNDIske, Armin-
item.grantfulltextopen-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Prüfsumme GrößeFormat  
Thesis_Entzian_final.pdf18b71c84ced6f33087f934388cc8f95f2.06 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe