DC ElementWertSprache
dc.contributor.advisorSchnittger, Arp-
dc.contributor.advisorLaue, Sören-
dc.contributor.authorGhosh, Ankit-
dc.date.accessioned2024-11-28T10:24:12Z-
dc.date.available2024-11-28T10:24:12Z-
dc.date.issued2024-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/11301-
dc.description.abstractIn plant science, the detailed examination of meiosis progression is hampered by the labour-intensive process of manual image analysis. Our research presents a novel, deep learning-based automation pipeline that significantly streamlines the quantification of meiotic timelines by analysing live-imaging videos. This innovative approach employs segmentation models to stabilize video frames, refines localization techniques to precisely identify individual meiocytes, and adopts a restricted space motion-inspired tracking methodology that effectively reduces computation time and improves tracking accuracy. Crucially, our framework distinguishes itself by generating Z-normalized staging pathways, enabling the construction of a piece-wise timeline of meiotic progression. This is achieved through a meticulously curated landmarking scheme, which our results confirm aligns with established meiosis timelines in both wild-type and heat-shocked Arabidopsis thaliana. Our study ventures beyond the diploid paradigm, extending the application of our high-throughput pipeline to tetraploid variants. The analyses disclose that while tetraploids exhibit comparable meiosis-I timelines to their diploid counterparts, a pronounced prolongation characterizes their meiosis-II stages. Furthermore, the systematic examination of tcx5;6 mutants and ATM gene insertions in tetraploids provides a quantitative view of the temporal dynamics in meiotic progression, highlighting the potential for chromosomal behaviour and genetic regulation to modulate meiotic efficiency. By integrating a convolutional neural network (CNN) based methodology with our modular pipeline, we deliver a transformative tool for meiosis analysis. Our work is not only restricted to timeline analysis, but the modular approach shows ability in different segmentation tasks from basics like pollen counting to more structured like DNA double-strand break and BiFC quantization.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectBioinformaticsen
dc.subjectMachine learningen
dc.subjectSingle cell analysisen
dc.subjectMeiosisen
dc.subjectPlant Scienceen
dc.subject.ddc004: Informatikde_DE
dc.titleaMP: Deep learning framework to characterize meiosis progression timeline in tetraploid Arabidopsis thalianaen
dc.typedoctoralThesisen
dcterms.dateAccepted2024-10-01-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl42.23: Entwicklungsbiologiede_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentBiologiede_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-123289-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.creatorOrcidGhosh, Ankit-
item.creatorGNDGhosh, Ankit-
item.advisorGNDSchnittger, Arp-
item.advisorGNDLaue, Sören-
item.grantfulltextopen-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Prüfsumme GrößeFormat  
PhD_Thesis_AG.pdfa5d30fff3be93fdb68b212fff8c3db3b66.37 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe