| DC Element | Wert | Sprache |
|---|---|---|
| dc.contributor.advisor | Wermter, Stefan | - |
| dc.contributor.author | Ahrens, Kyra | - |
| dc.date.accessioned | 2025-07-29T14:35:32Z | - |
| dc.date.available | 2025-07-29T14:35:32Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://ediss.sub.uni-hamburg.de/handle/ediss/11833 | - |
| dc.description.abstract | Continual learning addresses the challenge of training deep neural networks on a sequence of tasks without catastrophic forgetting. This thesis bridges the gap in downstream continual fine-tuning of foundation models by introducing and evaluating four different strategies: dual-memory replay, multi-layer prototyping, selective specialization, and noise-augmented feature replay, each delivering strong performance across diverse unimodal classification and multimodal reasoning problems. | en |
| dc.language.iso | en | de_DE |
| dc.publisher | Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky | de |
| dc.rights | http://purl.org/coar/access_right/c_abf2 | de_DE |
| dc.subject.ddc | 004: Informatik | de_DE |
| dc.title | Methods for Downstream Continual Learning with Foundation Models | en |
| dc.type | doctoralThesis | en |
| dcterms.dateAccepted | 2025-07-18 | - |
| dc.rights.cc | https://creativecommons.org/licenses/by-sa/4.0/ | de_DE |
| dc.rights.rs | http://rightsstatements.org/vocab/InC/1.0/ | - |
| dc.type.casrai | Dissertation | - |
| dc.type.dini | doctoralThesis | - |
| dc.type.driver | doctoralThesis | - |
| dc.type.status | info:eu-repo/semantics/publishedVersion | de_DE |
| dc.type.thesis | doctoralThesis | de_DE |
| tuhh.type.opus | Dissertation | - |
| thesis.grantor.department | Informatik | de_DE |
| thesis.grantor.place | Hamburg | - |
| thesis.grantor.universityOrInstitution | Universität Hamburg | de_DE |
| dcterms.DCMIType | Text | - |
| dc.identifier.urn | urn:nbn:de:gbv:18-ediss-130222 | - |
| item.creatorOrcid | Ahrens, Kyra | - |
| item.fulltext | With Fulltext | - |
| item.creatorGND | Ahrens, Kyra | - |
| item.grantfulltext | open | - |
| item.languageiso639-1 | other | - |
| item.advisorGND | Wermter, Stefan | - |
| Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen | |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Prüfsumme | Größe | Format | |
|---|---|---|---|---|---|
| Dissertation.pdf | d8add0ce95a34bf318866337a5986894 | 9.61 MB | Adobe PDF | ![]() Öffnen/Anzeigen |
Info
Seitenansichten
101
Letzte Woche
Letzten Monat
geprüft am 23.09.2025
Download(s)
361
Letzte Woche
Letzten Monat
geprüft am 23.09.2025
Werkzeuge
