DC ElementWertSprache
dc.contributor.advisorWermter, Stefan-
dc.contributor.authorAhrens, Kyra-
dc.date.accessioned2025-07-29T14:35:32Z-
dc.date.available2025-07-29T14:35:32Z-
dc.date.issued2025-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/11833-
dc.description.abstractContinual learning addresses the challenge of training deep neural networks on a sequence of tasks without catastrophic forgetting. This thesis bridges the gap in downstream continual fine-tuning of foundation models by introducing and evaluating four different strategies: dual-memory replay, multi-layer prototyping, selective specialization, and noise-augmented feature replay, each delivering strong performance across diverse unimodal classification and multimodal reasoning problems.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subject.ddc004: Informatikde_DE
dc.titleMethods for Downstream Continual Learning with Foundation Modelsen
dc.typedoctoralThesisen
dcterms.dateAccepted2025-07-18-
dc.rights.cchttps://creativecommons.org/licenses/by-sa/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentInformatikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-130222-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.advisorGNDWermter, Stefan-
item.grantfulltextopen-
item.creatorOrcidAhrens, Kyra-
item.creatorGNDAhrens, Kyra-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation.pdfd8add0ce95a34bf318866337a59868949.61 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe