Titel: Machine Learning Methods for Tau Lepton Identification and Search for the Supersymmetric Partner of the Tau Lepton Using CMS Run 2 Data
Sprache: Englisch
Autor*in: Shchedrolosiev, Mykyta
GND-Schlagwörter: ElementarteilchenphysikGND
Standardmodell <Elementarteilchenphysik>GND
CMS-DetektorGND
TauonGND
Maschinelles LernenGND
SupersymmetrieGND
LHCGND
Erscheinungsdatum: 2025
Tag der mündlichen Prüfung: 2025-05-23
Zusammenfassung: 
Gauge-mediated supersymmetry breaking models provide a compelling framework for the search for a supersymmetric partner of the tau lepton (stau) with a macroscopic lifetime. In such scenarios, stau can decay to tau lepton displaced from the primary proton-proton interaction vertex. Standard tau reconstruction and identification techniques at the Compact Muon Solenoid (CMS) experiment are not designed for these displaced signatures, motivating the development of specialised approaches.

This thesis begins by improving the existing CMS tau identification algorithms for prompt taus using modern machine learning techniques. Building on this foundation, a graph-based neural network is introduced to reliably identify displaced tau leptons, where large displacements pose unique detection challenges. Leveraging this dedicated displaced-tau identification, the first search for the direct production of moderately long-lived stau particles (decaying within the tracker volume) with hadronic taus in the final state is performed using proton-proton collision data at a center-of-mass energy of 13 TeV. The analysis is based on a dataset corresponding to an integrated luminosity of 138 fb-1, collected by the CMS experiment from 2016 to 2018. This work significantly enhances sensitivity to stau decay lengths of the order of centimetres or more, expanding the experimental coverage of gauge-mediated supersymmetry breaking scenarios.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/11850
URN: urn:nbn:de:gbv:18-ediss-130461
Dokumenttyp: Dissertation
Betreuer*in: Gallo-Voss, Elisabetta
Melzer-Pellmann, Isabell
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Thesis_Shchedrolosiev.pdfadbb677d855d400e2fe906db7f8c52fb24.4 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige

Info

Seitenansichten

337
Letzte Woche
Letzten Monat
geprüft am 23.09.2025

Download(s)

21
Letzte Woche
Letzten Monat
geprüft am 23.09.2025
Werkzeuge

Google ScholarTM

Prüfe