DC ElementWertSprache
dc.contributor.advisorDyckerhoff, Tobias-
dc.contributor.authorGödicke, Jonte-
dc.date.accessioned2025-08-15T14:14:44Z-
dc.date.available2025-08-15T14:14:44Z-
dc.date.issued2025-08-07-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/11876-
dc.description.abstractA monoidal category is called a convolution monoidal category if it arises from linearizing a 2-Segal space. The goal of this thesis is to study for which 2-Segal spaces the induced convolution monoidal category is a multi-fusion category. With this aim, we show that multi-fusion categories admit an intrinsic description as rigid algebras in the symmetric monoidal 2-category of C-linear additive categories. We use this observation to define, by analogy, a derived version of a multi-fusion category as a rigid algebra in the symmetric monoidal (infinity,2)-category of stable infinity-categories. We show that examples of these arise as derived categories of multi-fusion categories and as categories of modules over smooth and proper E2-algebras. Afterward, we show that rigid algebras in the (infinity, 2)-category of spans are precisely given by those 2-Segal objects that are Čech-nerves. Together with our previous result, we use this to provide an answer to our initial question. To prove this result, we provide a description of bimodules in the infinity-category of spans as birelative 2-Segal objects. Furthermore, we introduce a notion of morphism between birelative 2-Segal objects that extends this classification to an equivalence of infinity-categories. We use this classification to construct examples of convolution monoidal structures that form derived multi-fusion categories and discuss some aspects of the associated fully extended TFTs. We finish by studying Grothendieck–Verdier-structures on convolution monoidal infinity-categories and by comparing them with rigid dualities.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectHigher Segal Objectsen
dc.subjectTopological Field Theoriesen
dc.subject.ddc510: Mathematikde_DE
dc.titleRigid Convolution Structuresen
dc.typedoctoralThesisen
dcterms.dateAccepted2025-07-31-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl31.00: Mathematik: Allgemeinesde_DE
dc.subject.gndMathematikde_DE
dc.subject.gndMonoidale Kategoriede_DE
dc.subject.gndUnendlich-Kategoriede_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentMathematikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-130763-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.advisorGNDDyckerhoff, Tobias-
item.grantfulltextopen-
item.creatorOrcidGödicke, Jonte-
item.creatorGNDGödicke, Jonte-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Prüfsumme GrößeFormat  
Dissertation.pdffa6091c7b62921676dd11ccd2036c1bb1.89 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe