DC ElementWertSprache
dc.contributor.advisorSpieß, Martin-
dc.contributor.authorJann, Martin-
dc.date.accessioned2025-10-07T13:38:20Z-
dc.date.available2025-10-07T13:38:20Z-
dc.date.issued2025-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/11946-
dc.description.abstractScientific research involves different processes, including the accumulation, aggregation, and cumulation of knowledge. The latter is construed by using existing theories and empirical findings to obtain new results based on previous ones in further research. In psychology, the accumulation and aggregation of knowledge is employed in everyday research. This thesis sheds light on the cumulation of knowledge in psychology by focusing on statistical cumulation – the use of quantitative external information in statistical analyses. To prevent new results from being biased by misspecified external information, the uncertainties of the external information should be considered. This includes estimation and structural uncertainty, as external quantities are estimates and there are often structural differences between a new data set and external sources, such as different designs or populations. Furthermore, this thesis discusses a wide range of approaches for incorporating external information and considers how well they reflect present uncertainties. Previous approaches include generalized Bayesian analyses and inferential models that incorporate partial prior information about a parameter of interest. Careful consideration of previous approaches indicates that a frequentist approach had not been developed for this purpose in psychology. To address this issue, this thesis introduces an externally informed generalized method of moments approach, which was developed and outlined across the four attached papers. Within this novel approach, two uses of external information are possible: improving the statistical analysis of new data and testing the fit of external information and data to indicate structural differences between them. Furthermore, this approach can incorporate external information about variables in the form of statistical moment equations. Thus, it is a relevant addition to existing methods as generalized Bayesian and inferential model approaches have difficulty incorporating this type of external information. The main focus of the four attached papers was on the application of the externally informed generalized method of moments approach to multiple linear and repeated measures generalized linear models. Additionally, this PhD project provides software that allows applied researchers to use the developed approach with various models, such as multiple linear models, repeated measures generalized linear models, two-level mixed linear models, and structural equation models.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.relation.hasparthttps://proceedings.mlr.press/v215/ jann23a.htmlde_DE
dc.relation.haspartdoi:10.1007/s11336-024-09953-wde_DE
dc.relation.haspartdoi:10.1016/j.ijar.2024.109214de_DE
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectexternal informationen
dc.subjectimprecise probabilitiesen
dc.subjectuncertainty quantificationen
dc.subjectgeneralized method of momentsen
dc.subjectstatistics in psychologyde
dc.subject.ddc150: Psychologiede_DE
dc.titleRobust Use of External Information in Statistical Analysisen
dc.title.alternativeRobuste Nutzung externer Information in der statistischen Analysede
dc.typedoctoralThesisen
dcterms.dateAccepted2025-09-16-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl77.03: Methoden und Techniken der Psychologiede_DE
dc.subject.gndAsymptotische Statistikde_DE
dc.subject.gndAngewandte Statistikde_DE
dc.subject.gndRobuste Statistikde_DE
dc.subject.gndUnsicherheitsquantifizierungde_DE
dc.subject.gndMomentenmethode <Mathematik>de_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentPsychologiede_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-131690-
item.creatorOrcidJann, Martin-
item.fulltextWith Fulltext-
item.creatorGNDJann, Martin-
item.grantfulltextopen-
item.languageiso639-1other-
item.advisorGNDSpieß, Martin-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation_Jann_2025.pdfRobust Use of External Information in Statistical Analysis7c1c8ff936e1f3bcf763e52faa764ba83.06 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe