Volltextdatei(en) vorhanden
Titel: Geometric Transitions on non-Kähler Manifolds
Sonstige Titel: Geometrische Übergänge auf nicht-Kähler Mannigfaltigkeiten
Sprache: Englisch
Autor*in: Knauf, Anke
Schlagwörter: T-dualität; Spiegelsymmetrie; Hintergrundflüsse
GND-Schlagwörter: Stringtheorie; M-Theorie; D-Brane; Supergravitation
Erscheinungsdatum: 2006
Tag der mündlichen Prüfung: 2006-04-11
Zusammenfassung: 
In this thesis we study geometric transitions on the supergravity level. It is shown that the duality chain suggested by Vafa has to be modified to include non-Kähler backgrounds in type IIA. These backgrounds are non-trivially fibered due to their construction from IIB via T-duality, which mixes metric and Neveu-Schwarz flux. We demonstrate that these non-Kähler manifolds are not half-flat and show that a symplectic structure exists on them at least locally.

A similar method, employing T- and S-duality, is used to construct new non-Kähler backgrounds also in type I and heterotic string theory. They can be argued to be related by geometric transitions as well. A local toy model is provided that fulfills the flux equations of motion in IIB and the torsional relation in heterotic theory, and that is consistent with the U-duality relating both theories. For the heterotic theory we also propose a global solution that fulfills the torsional relation because it is similar to the Maldacena-Nunez background.

Diese Arbeit beschäftigt sich mit geometrischen Übergängen in Stringtheorie in der Approximation der Supergravitation. Es wird gezeigt, dass die von Vafa vorgeschlagene Dualitätskette modifiziert werden muss, da man in Typ IIA Mannigfaltigkeiten findet, die nicht Kähler sind. Die Kähler-Eigenschaft wird aufgrund einer nicht-trivialen Fibrierung gebrochen, welche unter T-Dualität mit Neveu-Schwarz-Hintergrundfluss entsteht. Es wird erklärt, dass die so konstruierte Mannigfaltigkeit nicht "halb-flach" ist, aber zumindest lokal eine symplektische Struktur besitzt.

Mit ähnlichen Methoden, unter Ausnutzung von T- und S-Dualität, erzeugen wir auch Supergravitations-Lösungen für Typ I und heterotische Theorie und führen Argumente an, die es erlauben, auch in diesen Theorien von geometrischen Übergängen zu sprechen. In der lokalen Näherung der Metrik wird gezeigt, dass man ein einfaches Beispiel konstruieren kann, in dem die Hintergrundflüsse die Bewegungsgleichung in Typ IIB und die Torsionsbedingung in heterotischer Stringtheorie erfüllen und außerdem konsistent mit der U-Dualität zwischen Typ IIB und der heterotischen Theorie sind. Für den heterotischen Hintergrund können wir auch eine Lösung mit globaler Metrik angeben, die die Torsionsbedingung erfüllt, da sie mit der konsistenten Maldacena-Nunez-Lösung verwandt ist.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/1323
URN: urn:nbn:de:gbv:18-28797
Dokumenttyp: Dissertation
Betreuer*in: Louis, Jan (Prof. Dr.)
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
thesis.pdf807.49 kBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

15
Letzte Woche
Letzten Monat
geprüft am 16.04.2021

Download(s)

10
Letzte Woche
Letzten Monat
geprüft am 16.04.2021
Werkzeuge

Google ScholarTM

Prüfe