Volltextdatei(en) vorhanden
Titel: Diagnostic Verification of Atmospheric Water Cycle Predicted by Regional Mesoscale Models and Ensemble Systems
Sonstige Titel: Diagnostische Verifikation des Atmosphärischen Wasserkreislaufs Vorhergesagt mit Regionalen Mesoskaligen Modellen und Ensemblesystemen
Sprache: Englisch
Autor*in: Polade, Suraj Devidasrao
Schlagwörter: Verification; Atmospheric Water Cycle; Ensemble Systems; quantitative precipitation forecasts
Erscheinungsdatum: 2012
Tag der mündlichen Prüfung: 2012-01-25
Zusammenfassung: 
Precipitation is the final component of a complex process chain of the atmospheric water cycle. All model errors in this process chain are consequently accumulated in quantitative precipitation forecasts (QPF). To diagnose the shortcomings of QPF, the following four key variables of the atmospheric water cycle have been evaluated: integrated water vapour content (IWV), low cloud cover (LCC), high cloud cover (HCC), and precipitation rate at the surface. This comprehensive verification of all key variables is performed for nine deterministic models and four ensemble systems from the forecast demonstration experiment of Mesoscale Alpine Program (MAP D-PHASE) using measurements from the General Observation Period (GOP) over Southern Germany for summer 2007. Verification of individual key variables reveals that most of the models forecast the mean values of IWV very well; however, they show large biases in the mean values of LCC, HCC, and precipitation. At certain times and locations, all models show large errors in all key variables, especially in HCC and precipitation. The models with convection parameterization predict diurnal precipitation maxima a few hours earlier than observations, whereas deep-convection-resolving models forecast the diurnal maxima too late. Early initiation of convection is a specific problem of the Tiedtke convection scheme. The forecast performance of high resolution models is superior to their corresponding low resolution models for all key variables, except for IWV. Multivariate verification fails to quantify the shortcomings in QPF, perhaps due to the limited availability of observations. Multimodel multiboundary ensemble prediction systems (EPS) show superiority in the prediction of all key variables and also has better representation of forecast uncertainty compared to EPS based on a single model. EPS which accounts the small-scale perturbations, due to the uncertainty in boundary and initial conditions from limited area models, lead to better forecasts for strong events. However, all the EPS evaluated in this study are underdispersive which clearly implies that they are not able to account for all possible uncertainties of short-range forecasts.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/4344
URN: urn:nbn:de:gbv:18-55176
Dokumenttyp: Dissertation
Betreuer*in: Ament, Felix (Prof. Dr.)
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation.pdfcb396e432ebbc534faa512049086ffbc2.76 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

652
Letzte Woche
Letzten Monat
geprüft am 06.01.2025

Download(s)

95
Letzte Woche
Letzten Monat
geprüft am 06.01.2025
Werkzeuge

Google ScholarTM

Prüfe