Volltextdatei(en) vorhanden
Titel: Real-time Machine Listening and Segmental Re-synthesis for Networked Music Performance
Sonstige Titel: Echtzeit- maschinelles Zuhören und segmentierte Resynthese von Netzwerk-Musikvorführung
Sprache: Englisch
Autor*in: Alexandraki, Chrisoula
Schlagwörter: networked music performance; machine listening; audio to score alignment; onset detection; segmental audio synthesis; Hidden Markov Models
GND-Schlagwörter: Systematische Musikwissenschaft
Erscheinungsdatum: 2014
Tag der mündlichen Prüfung: 2014-11-17
Zusammenfassung: 
The general scope of this work is to investigate potential benefits of Networked Music Performance (NMP) systems by employing techniques commonly found in Machine Musicianship. Machine Musicianship is a research area aiming at developing software systems exhibiting some musical skill such as listening, composing or performing music. A distinct track of this research line, mostly relevant to this work, is computer accompaniment systems. Such systems are expected to accompany human musicians by causally analysing the music being performed and timely responding by synthesizing an accompaniment, or the part of one or more of the remaining members of a performance ensemble. The objective of the present work is to investigate the possibility of representing each performer of a dispersed NMP ensemble, by a local computer-based musician, which constantly listens to the local performance, receives network notifications from remote locations and re-synthesizes the performance of remote peers. Whenever a new musical construct is recognized at the location of each performer, a code representing that construct is communicated to all of the remaining musicians, as low-bandwidth information. Upon reception, the remote audio signal is re-synthesized by splicing pre-recorded audio segments corresponding to the musical construct identified by the received code. Computer accompaniment systems may use any conventional audio synthesis technique to generate the accompaniment. In this work, investigations focus on concatenative music synthesis, in an attempt to preserve all expressive nuances introduced by the interpretation of individual performers. Hence, the research carried out and presented in this dissertation lies on the intersection of three domains, which are NMP, Machine Musicianship and Concatenative Music Synthesis.
The dissertation initially presents an analysis of the current trends in all three research domains, and then elaborates on the methodology that was followed to realize the intended scenario. Research efforts have led to the development of BoogieNet, a preliminary software prototype implementing the proposed communication scheme for networked musical interactions. Real-time music analysis is achieved by means of audio-to-score alignment techniques and re-synthesis at the receiving end takes place by concatenating pre-recorded and automatically segmented audio units, generated by means of onset detection algorithms. The methodology of the entire process is presented and contrasted with competing analysis/synthesis techniques. Finally, the dissertation presents important implementation details and an experimental evaluation to demonstrate the feasibility of the proposed approach.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/5694
URN: urn:nbn:de:gbv:18-71008
Dokumenttyp: Dissertation
Betreuer*in: Bader, Rolf (Prof. Dr.)
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
Dissertation.pdf7.87 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

116
Letzte Woche
Letzten Monat
geprüft am 12.04.2021

Download(s)

10
Letzte Woche
Letzten Monat
geprüft am 12.04.2021
Werkzeuge

Google ScholarTM

Prüfe