Volltextdatei(en) vorhanden
DC ElementWertSprache
dc.contributor.advisorSengstock, Klaus (Prof. Dr.)
dc.contributor.authorKerkmann, Andreas
dc.date.accessioned2020-10-19T13:10:35Z-
dc.date.available2020-10-19T13:10:35Z-
dc.date.issued2019
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/6115-
dc.description.abstractThe behavior of quantum many-body systems in nature is often an issue of great complexity. Hence, instead of describing those systems entirely, we tend to extract particular phenomena of interest and to simulate them in accessible simplified quantum mechanical model systems. Fortunately, the total availability of such model systems is not only restricted to numerical models but there are many artificially prepared quantum systems. In the field of ultracold quantum gases, experimentalists provide powerful tools for preparing, manipulating and detecting quantum many-body systems. A new scientific project in the group of Klaus Sengstock is setting up a modern and versatile ultracold quantum gas experiment. It aims to prepare model systems for simulating effects that play a role in attosecond science as well as to engineer quantum states with anyonic excitation that are e.g. relevant in studies of the fractional quantum Hall effect. Within the course of this first PhD thesis of the project, we built a novel apparatus that is explicitly geared to allow quantum gas microscopy in the future as it will be a powerful tool to analyze interesting correlations on a single particle level. Our built apparatus includes a 2D-/3D-MOT loading scheme that we verify to work for both stable isotopes of lithium. Due to this unconventional but compact way of loading the atoms from a hot gas streaming out of an oven, we are able to omit any transfer of the atoms after the trapping in a 3D-MOT. Thus, the 3D-MOT is already situated in a relatively small glass cell at the focus of an objective providing sub-micron resolution that we characterize numerically and in a test setup to suit for quantum gas microscopy. As further manipulation steps, we implement gray molasses cooling that cools the gas to sub-Doppler temperatures. It permits the loading of a far-detuned optical dipole trap where we routinely perform all-optical evaporative cooling and reach quantum degeneracy by realizing a Bose-Einstein condensate of weakly-bound 6Li molecules. As we require two-dimensional samples for our studies, we additionally implement a red-detuned one-dimensional optical accordion for the dynamical and preferably adiabatic squeezing of our gas within a single slice of that vertical lattice. In order to image the atoms in that slice with single-particle resolution on a submicron level, we not only rely on an objective with high numerical aperture but also on an additional optical lattice for pinning the atoms within the two-dimensional plane during the emission of fluorescence photons. Here, we decided for a horizontal triangular lattice that is designed, characterized and adjusted onto the atomic sample during the present thesis.en
dc.description.abstractDas Verhalten von Quantenvielteilchensystemen in der Natur ist oftmals sehr komplex. Anstatt diese Systeme vollständig zu beschreiben, versuchen wir daher interessante Phänomene zu extrahieren und sie in zugänglichen, vereinfachten quantenmechanischen Modellsystemen zu simulieren. Glücklicherweise beschränkt sich die Verfügbarkeit solcher Modellsysteme nicht nur auf numerische Rechenmodelle, sondern es gibt viele künstlich herstellbare Quantensysteme. Auf dem Gebiet der ultrakalten Quantengase haben Experimentatoren leistungsstarke Werkzeuge zur Herstellung, Manipulation und Detektion von künstlichen Quantenvielteilchensystemen zur Hand. In einem neuen Projekt wird in der Forschungsgruppe von Klaus Sengstock ein modernes und vielseitiges Experiment mit ultrakalten Quantengasen aufgebaut, das darauf abzielt, eine neue Sicht auf quantenmechanische Modelle zu richten, die in der Ultrakurzzeitphysik eine Rolle spielen, und ferner auch Quantenzustände mit anyonischen Anregungen zu präparieren, die beispielsweise in Studien zum fraktionierten Quanten-Hall-Effekt relevant sind. Im Rahmen dieser ersten Doktorarbeit an dem Projekt haben wir eine neuartige Maschine gebaut, die speziell darauf ausgerichtet ist zukünftig Quantengasmikroskopie an Modellsystemen zu ermöglichen. Diese Technik zur Detektion wird für uns ein leistungsfähiges Werkzeug sein, mit dem interessante Korrelationen auf der Basis einzelner Konsituenten des Quantensystems analysiert werden können. Die gebaute Maschine enthält ein 2D-/3D-MOT-Ladeschema, das für die beiden stabilen Lithiumisotope funktioniert. Hierbei werden die Atome aus einem heißen Gas, das aus einem Ofen strömt, über eine 2D-MOT in eine 3D-MOT geladen. Diese Methode macht es möglich, einen weiteren Transport der Atome nach dem Einfangen in einer 3D-MOT zu vermeiden. So befindet sich letztere bereits in einer relativ kleinen Glaszelle im Fokus eines Objektivs, das eine Submikrometer-Auflösung ermöglicht. Diese charakterisierten wir numerisch und in einem dafür geeigneten Versuchsaufbau hinsichtlich der Tauglichkeit zur Quantengasmikroskopie. Nach der MOT führen wir in einem weiteren Manipulationsschritt eine Graue-Melasse-Kühlung durch, die das Gas auf Sub-Doppler-Temperaturen bringt. Dabei erhöht sich die Phasenraumdichte, sodass das Laden einer weit verstimmten optischen Dipolfalle möglich ist. Hier führen wir routinemäßig eine rein optische Verdampfungskühlung durch und erreichen Quantenentartung, indem wir ein BoseEinstein-Kondensat aus 6Li Molekülen realisieren. Da wir ein zweidimensionales Gas für unsere Studien benötigen, implementieren wir ein rot-verstimmtes eindimensionales optisches Akkordeon, mit dem Ziel unser Gas innerhalb einer einzelnen Schicht dieses vertikalen Gitters dynamisch und dennoch möglichst adiabatisch zu komprimieren. Um die Atome in dieser Schicht mit Einzelteilchenauflösung im Submikrometerbereich abzubilden, setzen wir nicht nur auf ein Objektiv mit hoher numerischer Apertur, sondern auch auf ein zusätzliches optisches Gitter, das die Atome in der zweidimensionalen Ebene während der Emission von Fluoreszenzphotonen festhält. Hier haben wir uns für ein horizontales Dreiecksgitter entschieden, das in der vorliegenden Arbeit entworfen, charakterisiert und auf die Atome justiert wurde.de
dc.language.isoenen
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectQuantengasmikroskopiede
dc.subjectultrakalte Atomede
dc.subjectOptische Gitterde
dc.subjectAkkordion-Gitterde
dc.subjectQuantum Gas Microscopyen
dc.subjectOptical latticesen
dc.subjectUltracold Atomsen
dc.subject.ddc530 Physik
dc.titleA novel Apparatus for Quantum Gas Microscopy of Lithium Atomsen
dc.title.alternativeEine neue Apparatur für die Quantengasmikroskopie mit Lithiumatomende
dc.typedoctoralThesis
dcterms.dateAccepted2019-12-03
dc.rights.ccNo license
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.bcl33.18 Optik
dc.subject.bcl33.30 Atomphysik, Molekülphysik
dc.subject.bcl33.38 Quantenoptik, nichtlineare Optik
dc.subject.bcl33.60 Kondensierte Materie: Allgemeines
dc.subject.gndQuantengas
dc.subject.gndBose-Einstein-Kondensation
dc.subject.gndLaserkühlung
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisdoctoralThesis
tuhh.opus.id10172
tuhh.opus.datecreation2019-12-06
tuhh.type.opusDissertation-
thesis.grantor.departmentPhysik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionUniversität Hamburg
dcterms.DCMITypeText-
tuhh.gvk.ppn1686848021
dc.identifier.urnurn:nbn:de:gbv:18-101727
item.fulltextWith Fulltext-
item.creatorOrcidKerkmann, Andreas-
item.grantfulltextopen-
item.advisorGNDSengstock, Klaus (Prof. Dr.)-
item.languageiso639-1other-
item.creatorGNDKerkmann, Andreas-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
Dissertation.pdf13.9 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

29
Letzte Woche
Letzten Monat
geprüft am 12.05.2021

Download(s)

51
Letzte Woche
Letzten Monat
geprüft am 12.05.2021
Werkzeuge

Google ScholarTM

Prüfe