Volltextdatei(en) vorhanden
Titel: Micro-channel Cooling For Silicon Detectors
Sonstige Titel: Mikrokanalkühlung für Siliziumdetektoren
Sprache: Englisch
Autor*in: Flaschel, Nils
Schlagwörter: Micro-channels; silicon sensors; detectors
Erscheinungsdatum: 2017
Tag der mündlichen Prüfung: 2017-11-06
Silicon tracking detectors employed in high-energy physics are located very close to the interaction points of the colliding particle beams. The high energetic radiation emerging from the interaction induces defects into the silicon, downgrading the efficiency to collect the charges created by passing particles and increasing the noise while data taking. Cooling the sensors to low temperatures can help to prevent defects and maintain a high efficiency and lower noise level.
In order to maximize the LHC’s discovery potential, the collider and its detectors will be upgraded to a higher luminosity around 2024. The conditions inside the detector will become harsher demanding that the technology must adapt to the new situation.
Radiation damage is already an issue in the current ATLAS detector and therefore a huge number of parameters are constantly monitored and evaluated to ensure optimal operation. To provide the best possible settings the behavior of the sensors inside the ATLAS Inner Detector is predicted using simulations. In this work several parameters in the simulation including the depletion voltage and the crosstalk between sensor strips of the SCT detector are analyzed and compared with data.
The main part of this work concerns the investigation of a novel cooling system based on micro-channels etched into silicon in a generic research and development project at DESY and IMB-CNM.
A channel layout is designed providing a homogeneous flow distribution across a large surface area and tested in a computational fluid simulation before its production. Two different fabrication techniques, anodic and eutectic bonding, are used to test prototypes with differing mechanical and thermal properties. Hydromechanical and thermal measurements are performed to fully characterize the flow inside the device and the thermal properties of the prototype in air and in a vacuum. The thermal behavior is analyzed by means of local measurements with thermal resistors and infrared cameras. A test facility is developed and constructed in order to realize the measurements. The results of the simulations and the experimentally gained results are compared and contrasted.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/7505
URN: urn:nbn:de:gbv:18-89152
Dokumenttyp: Dissertation
Betreuer*in: Tackmann, Kerstin (Dr.)
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
Dissertation.pdf15.38 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.



Letzte Woche
Letzten Monat
geprüft am 11.04.2021


Letzte Woche
Letzten Monat
geprüft am 11.04.2021

Google ScholarTM