Volltextdatei(en) vorhanden
DC ElementWertSprache
dc.contributor.advisorGasser, Ingenuin (Prof. Dr.)
dc.contributor.authorAllwörden, Hannes von
dc.date.accessioned2020-10-19T13:28:23Z-
dc.date.available2020-10-19T13:28:23Z-
dc.date.issued2020
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/8430-
dc.description.abstractMathematical models of traffic flow have been successfully used to describe, understand and predict congestion, behaviour at bottlenecks, and other phenomena. Models for single-lane vehicular traffic are often formulated either “microscopically” as systems of ordinary differential equations, trying to capture the dynamics at the level of a single vehicle, or “macroscopically” as (systems of) partial differential equations, describing e.g. car density and flow velocity. For microscopic models of a finite number of cars on a ring road, detailed stability and bifurcation analysis can be done. In this way it can be explained why and how a slight variation of circumstances like mean density, reaction time, or driving behaviour can lead to an abrupt change from smoothly flowing traffic to congestion. It may be suspected that the fact that the information about a driver’s decisions influences his actions at a later point of time by travelling from vehicle to vehicle upstream around the circle might lead to unrealistic effects. If, however, an open road of infinite length is considered instead, the situation becomes more involving mathematically. The aim of this dissertation is to study how stability properties of traffic flow models change on the transition from circular road to infinite lane and from microscopic to macroscopic description. Prior applications of the concepts of convective and absolute instability to microscopic models are reviewed. These results are compared to those obtained for related macroscopic models. The notions of transient and remnant instability, well-known from partial differential equations, are introduced for microscopic models by considering their behaviour under certain exponentially weighted norms. Analysis of car-following models on the circular road has shown that periodic solutions correspond- ing to stop-and-go-waves may emerge from Hopf bifurcations and can be numerically continued through parameter space, sometimes even into regions for which the quasi-stationary solutions are locally stable. We examine how these solutions behave and how they move with respect to different reference frames when the ring is opened and the number of cars is infinite.en
dc.language.isoenen
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectdifferential equationen
dc.subjecttraffic flowen
dc.subjecttravelling waveen
dc.subjectoptimal velocity modelen
dc.subjectconvective instabilityen
dc.subject.ddc510 Mathematik
dc.titleStability of Micro- and Macroscopic Traffic Flow Models on the Transition from Circular Road to Infinite Laneen
dc.title.alternativeStabilität mikro- und makroskopischer Verkehrsmodelle beim Übergang von der Ringstraße zur Geradende
dc.typedoctoralThesis
dcterms.dateAccepted2020-06-04
dc.rights.ccNo license
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.bcl31.44 Gewöhnliche Differentialgleichungen
dc.subject.bcl31.45 Partielle Differentialgleichungen
dc.subject.bcl31.80 Angewandte Mathematik
dc.subject.gndDifferentialgleichung
dc.subject.gndVerkehr
dc.subject.gndWanderwelle
dc.subject.gndStabilität
dc.subject.gndLinearisierung
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisdoctoralThesis
tuhh.opus.id10535
tuhh.opus.datecreation2020-07-16
tuhh.type.opusDissertation-
thesis.grantor.departmentMathematik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionUniversität Hamburg
dcterms.DCMITypeText-
tuhh.gvk.ppn1726500888
dc.identifier.urnurn:nbn:de:gbv:18-105357
item.fulltextWith Fulltext-
item.creatorOrcidAllwörden, Hannes von-
item.grantfulltextopen-
item.advisorGNDGasser, Ingenuin (Prof. Dr.)-
item.languageiso639-1other-
item.creatorGNDAllwörden, Hannes von-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
Dissertation.pdf11.71 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

62
Letzte Woche
Letzten Monat
geprüft am 11.05.2021

Download(s)

97
Letzte Woche
Letzten Monat
geprüft am 11.05.2021
Werkzeuge

Google ScholarTM

Prüfe