DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | Wermter, Stefan | - |
dc.contributor.author | Alpay, Tayfun | - |
dc.date.accessioned | 2021-04-27T13:58:52Z | - |
dc.date.available | 2021-04-27T13:58:52Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://ediss.sub.uni-hamburg.de/handle/ediss/8944 | - |
dc.language.iso | en | de_DE |
dc.publisher | Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky | de |
dc.rights | http://purl.org/coar/access_right/c_abf2 | de_DE |
dc.subject | recurrent neural networks | en |
dc.subject | natural language processing | en |
dc.subject | machine learning | en |
dc.subject.ddc | 004: Informatik | de_DE |
dc.title | Periodicity, Surprisal, Attention: Skip Conditions for Recurrent Neural Networks | en |
dc.type | doctoralThesis | en |
dcterms.dateAccepted | 2021-03-24 | - |
dc.rights.cc | https://creativecommons.org/licenses/by-sa/4.0/ | de_DE |
dc.rights.rs | http://rightsstatements.org/vocab/InC/1.0/ | - |
dc.type.casrai | Dissertation | - |
dc.type.dini | doctoralThesis | - |
dc.type.driver | doctoralThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | de_DE |
dc.type.thesis | doctoralThesis | de_DE |
tuhh.type.opus | Dissertation | - |
thesis.grantor.department | Informatik | de_DE |
thesis.grantor.place | Hamburg | - |
thesis.grantor.universityOrInstitution | Universität Hamburg | de_DE |
dcterms.DCMIType | Text | - |
dc.identifier.urn | urn:nbn:de:gbv:18-ediss-91763 | - |
item.creatorOrcid | Alpay, Tayfun | - |
item.advisorGND | Wermter, Stefan | - |
item.fulltext | With Fulltext | - |
item.creatorGND | Alpay, Tayfun | - |
item.languageiso639-1 | other | - |
item.grantfulltext | open | - |
Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen |
Dateien zu dieser Ressource:
Datei | Prüfsumme | Größe | Format | |
---|---|---|---|---|
Dissertation.pdf | 4884927dd5918f96b78d6c4bc5db4bb8 | 12.85 MB | Adobe PDF | Öffnen/Anzeigen |
Info
Seitenansichten
660
Letzte Woche
Letzten Monat
geprüft am 01.02.2025
Download(s)
1.126
Letzte Woche
Letzten Monat
geprüft am 01.02.2025
Werkzeuge