DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | Iske, Armin | - |
dc.contributor.author | Wagner, Niklas | - |
dc.date.accessioned | 2021-10-19T10:36:35Z | - |
dc.date.available | 2021-10-19T10:36:35Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://ediss.sub.uni-hamburg.de/handle/ediss/9268 | - |
dc.description.abstract | With the rapidly advancing developement of smartphones with integrated cameras, digital image compression is still a relevant and ongoing research topic. Conventional schemes, such as JPEG or JPEG 2000, rely on fixed transforms over regular grids. Opposed to this, adaptive thinning is an image compression scheme that reconstructs an image with linear splines over the anisotropic Delaunay triangulation of a set of adaptively chosen significant pixels The main objective of this thesis is to improve the performance of this scheme, especially on textured images. To this end, we propose a post-processing procedure that improves selected regions of the reconstruction by utilizing graph signal processing as a tool to define frequency spectra on irregular, triangular image domains. Our approach designs adaptive graphs to exploit signal smoothness of graph signals. To this end, significant triangular image blocks are classified via the structure tensor based on their textural content. Graphs are constructed that promote sparseness of the graph Fourier spectrum. This is achieved either by graph learning methods or a discrete weight model, where the edge weight is chosen optimally. Based on the constructed graphs, the signal is transformed via the graph Fourier transform to the graph spectral domain, where thresholding and quantization can be performed efficiently. Finally, we show how to implement this scheme, focusing on the transformation and quantization. We compare it with the adaptive thinning scheme on geometric and natural images. | en |
dc.language.iso | en | de_DE |
dc.publisher | Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky | de |
dc.rights | http://purl.org/coar/access_right/c_abf2 | de_DE |
dc.subject | Graph Signal Processing | en |
dc.subject | Graph Fourier Transform | en |
dc.subject | Adaptive Thinning | en |
dc.subject | Image Compression | en |
dc.subject | Transform Coding | en |
dc.subject | Adaptive Graph Laplacian | en |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Graph Spectral Image Processing over Adaptive Triangulations | en |
dc.type | doctoralThesis | en |
dcterms.dateAccepted | 2021-09-03 | - |
dc.rights.cc | https://creativecommons.org/licenses/by/4.0/ | de_DE |
dc.rights.rs | http://rightsstatements.org/vocab/InC/1.0/ | - |
dc.subject.bcl | 31.80: Angewandte Mathematik | de_DE |
dc.subject.gnd | Signalverarbeitung | de_DE |
dc.subject.gnd | Bildverarbeitung | de_DE |
dc.subject.gnd | Delaunay-Triangulierung | de_DE |
dc.subject.gnd | Graphentheorie | de_DE |
dc.subject.gnd | Textursynthese | de_DE |
dc.type.casrai | Dissertation | - |
dc.type.dini | doctoralThesis | - |
dc.type.driver | doctoralThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | de_DE |
dc.type.thesis | doctoralThesis | de_DE |
tuhh.type.opus | Dissertation | - |
thesis.grantor.department | Mathematik | de_DE |
thesis.grantor.place | Hamburg | - |
thesis.grantor.universityOrInstitution | Universität Hamburg | de_DE |
dcterms.DCMIType | Text | - |
dc.identifier.urn | urn:nbn:de:gbv:18-ediss-96055 | - |
item.advisorGND | Iske, Armin | - |
item.grantfulltext | open | - |
item.creatorGND | Wagner, Niklas | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | other | - |
item.creatorOrcid | Wagner, Niklas | - |
Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen |
Dateien zu dieser Ressource:
Datei | Beschreibung | Prüfsumme | Größe | Format | |
---|---|---|---|---|---|
Dissertation Niklas Wagner.pdf | Dissertation | 4854a098981b2b37c612f4df9e363cd9 | 3.64 MB | Adobe PDF | Öffnen/Anzeigen |
ATGSP.zip | ATGSP Matlab Code | d04c849ca31dc3231e06bf3fca3bf381 | 2.84 MB | MATLAB | Öffnen/Anzeigen |
Info
Seitenansichten
368
Letzte Woche
Letzten Monat
geprüft am 14.01.2025
Download(s)
353
Letzte Woche
Letzten Monat
geprüft am 14.01.2025
Werkzeuge