DC ElementWertSprache
dc.contributor.advisorIske, Armin-
dc.contributor.authorWagner, Niklas-
dc.date.accessioned2021-10-19T10:36:35Z-
dc.date.available2021-10-19T10:36:35Z-
dc.date.issued2021-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/9268-
dc.description.abstractWith the rapidly advancing developement of smartphones with integrated cameras, digital image compression is still a relevant and ongoing research topic. Conventional schemes, such as JPEG or JPEG 2000, rely on fixed transforms over regular grids. Opposed to this, adaptive thinning is an image compression scheme that reconstructs an image with linear splines over the anisotropic Delaunay triangulation of a set of adaptively chosen significant pixels The main objective of this thesis is to improve the performance of this scheme, especially on textured images. To this end, we propose a post-processing procedure that improves selected regions of the reconstruction by utilizing graph signal processing as a tool to define frequency spectra on irregular, triangular image domains. Our approach designs adaptive graphs to exploit signal smoothness of graph signals. To this end, significant triangular image blocks are classified via the structure tensor based on their textural content. Graphs are constructed that promote sparseness of the graph Fourier spectrum. This is achieved either by graph learning methods or a discrete weight model, where the edge weight is chosen optimally. Based on the constructed graphs, the signal is transformed via the graph Fourier transform to the graph spectral domain, where thresholding and quantization can be performed efficiently. Finally, we show how to implement this scheme, focusing on the transformation and quantization. We compare it with the adaptive thinning scheme on geometric and natural images.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectGraph Signal Processingen
dc.subjectGraph Fourier Transformen
dc.subjectAdaptive Thinningen
dc.subjectImage Compressionen
dc.subjectTransform Codingen
dc.subjectAdaptive Graph Laplacianen
dc.subject.ddc510: Mathematikde_DE
dc.titleGraph Spectral Image Processing over Adaptive Triangulationsen
dc.typedoctoralThesisen
dcterms.dateAccepted2021-09-03-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl31.80: Angewandte Mathematikde_DE
dc.subject.gndSignalverarbeitungde_DE
dc.subject.gndBildverarbeitungde_DE
dc.subject.gndDelaunay-Triangulierungde_DE
dc.subject.gndGraphentheoriede_DE
dc.subject.gndTextursynthesede_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentMathematikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-96055-
item.advisorGNDIske, Armin-
item.grantfulltextopen-
item.creatorGNDWagner, Niklas-
item.fulltextWith Fulltext-
item.languageiso639-1other-
item.creatorOrcidWagner, Niklas-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation Niklas Wagner.pdfDissertation4854a098981b2b37c612f4df9e363cd93.64 MBAdobe PDFÖffnen/Anzeigen
ATGSP.zipATGSP Matlab Coded04c849ca31dc3231e06bf3fca3bf3812.84 MBMATLABÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

368
Letzte Woche
Letzten Monat
geprüft am 14.01.2025

Download(s)

353
Letzte Woche
Letzten Monat
geprüft am 14.01.2025
Werkzeuge

Google ScholarTM

Prüfe