Titel: | Search for B → K𝑣𝑣 decays with a machine learning method at the Belle II experiment | Sprache: | Englisch | Autor*in: | Praz, Cyrille | Schlagwörter: | Particle Physics; Belle II experiment; Rare decay; Electroweak penguin; Machine learning | GND-Schlagwörter: | PhysikGND ElementarteilchenphysikGND Belle-II-DetektorGND B-MesonGND Maschinelles LernenGND |
Erscheinungsdatum: | 2022 | Tag der mündlichen Prüfung: | 2022-08-23 | Zusammenfassung: | This thesis documents a search for the rare decay of a B meson into a K meson and a pair of neutrinos at the Belle II experiment, which is located along the SuperKEKB energy-asymmetric electron-positron collider. This decay has never been observed, its branching fraction is predicted with accuracy in the standard model of particle physics, and is a good probe of physics beyond the standard model. A novel method to search for this decay, the inclusive tagging, is developed on a data sample corresponding to an integrated luminosity of 189 fb−1 collected at the Υ(4S) resonance, and a complementary sample of 18 fb−1 collected 60 MeV below the resonance. For this integrated luminosity, the expected upper limits on the branching fraction of B+→K+νν̄ and B0→KS0νν̄ are determined from simulation to be 1.0×10−5 and 1.8×10−5 at the 90% confidence level, respectively. When the method is applied to data samples of 63 fb−1 collected at the Υ(4S) resonance and 9 fb−1 collected 60 MeV below the resonance, no significant signal is observed, and an upper limit on the branching fraction of B+→K+νν̄ is determined to be 4.1×10−5 at the 90% confidence level. |
URL: | https://ediss.sub.uni-hamburg.de/handle/ediss/9793 | URN: | urn:nbn:de:gbv:18-ediss-102932 | Dokumenttyp: | Dissertation | Betreuer*in: | Glazov, Alexander Tackmann, Kerstin |
Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen |
Dateien zu dieser Ressource:
Datei | Prüfsumme | Größe | Format | |
---|---|---|---|---|
phd_thesis_cyrille_praz_to_publish.pdf | c246d68d182634d4316554d32bb8358f | 7.08 MB | Adobe PDF | Öffnen/Anzeigen |
Info
Seitenansichten
294
Letzte Woche
Letzten Monat
geprüft am 21.12.2024
Download(s)
211
Letzte Woche
Letzten Monat
geprüft am 21.12.2024
Werkzeuge