DC ElementWertSprache
dc.contributor.advisorRunkel, Ingo-
dc.contributor.authorRomaidis, Iordanis-
dc.date.accessioned2023-02-02T13:05:43Z-
dc.date.available2023-02-02T13:05:43Z-
dc.date.issued2022-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/9945-
dc.description.abstractIn this thesis we study mapping class group actions of the three-dimensional Reshetikhin-Turaev topological quantum field theory motivated by questions in three-dimensional quantum gravity where mapping class group averages appear as candidates for gravity partition functions. One of the main results is a bulk-boundary correspondence between mapping class group averages and a rational conformal field theory whose chiral mapping class group representations are irreducible and obey a finiteness property. As primary examples we find that Ising-type modular fusion categories and their Reshetikhin-Turaev topological quantum field theories are characterised by these properties. Finally, for a given modular fusion category C we show that if the mapping class group representation on every surface without marked points is irreducible then there is a unique indecomposable C-module category with module trace, namely C itself. Such module categories describe surface defects in three-dimensional Reshetikhin-Turaev topological quantum field theories. This links irreducibility of mapping class group representations and absence of non-trivial surface defects.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.relation.hasparthttps://doi.org/10.48550/arXiv.2106.01454de_DE
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectMapping class groupen
dc.subjectDefectsen
dc.subjectQuantum gravityen
dc.subjectTQFTen
dc.subject.ddc510: Mathematikde_DE
dc.titleMapping class group actions and their applications to 3D gravityen
dc.typedoctoralThesisen
dcterms.dateAccepted2022-10-04-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.bcl31.00: Mathematik: Allgemeinesde_DE
dc.subject.gndDarstellungstheoriede_DE
dc.subject.gndQuantengravitationde_DE
dc.subject.gndTopologische Quantenfeldtheoriede_DE
dc.subject.gndMathematische Physikde_DE
dc.subject.gndMonoidale Kategoriede_DE
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentMathematikde_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-104893-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.creatorOrcidRomaidis, Iordanis-
item.creatorGNDRomaidis, Iordanis-
item.advisorGNDRunkel, Ingo-
item.grantfulltextopen-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Romaidis-Dissertation-Revised.pdf0ae894ec71b6a2fafb855ef7f4c8406a985.04 kBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

322
Letzte Woche
Letzten Monat
geprüft am 03.12.2024

Download(s)

224
Letzte Woche
Letzten Monat
geprüft am 03.12.2024
Werkzeuge

Google ScholarTM

Prüfe