
Titel: | Monitoring Reduced Emissions from Deforestation and Forest Degradation (REDD+) : Capabilities of High- Resolution Active Remote Sensing | Sonstige Titel: | Monitoring reduzierter Emissionen aus Entwaldung und Walddegradierung (REDD+) : Potenziale hochaufgelöster aktiver Fernerkundung | Sprache: | Englisch | Autor*in: | Baldauf, Thomas | Schlagwörter: | REDD; REDD+; vermiedene Entwaldung; REDD; REDD+; avoided deforestation | GND-Schlagwörter: | Entwaldung Degradierung Fernerkundung Radar Tropischer Wald Monitoring |
Erscheinungsdatum: | 2013 | Tag der mündlichen Prüfung: | 2013-04-22 | Zusammenfassung: | REDD+ is a climate change mitigation mechanism for tropical forests presently being negotiated under the UNFCCC. It aims to attribute economic value to the carbon stored in forests, and thereby integrates forest protection into economic and political decision making processes. REDD+ embraces five activities that show a mitigating effect on climate change. One of these activities is reducing emissions from forest degradation. Although forest degradation is an intrinsic part of REDD+, only rough estimates are available for the total of emissions from forest degradation. Nevertheless, these estimates show the importance of grappling with forest degradation in REDD+, if significant emission reductions are envisaged. Currently, however, REDD+ lacks access to scientifically sound, applicable and cost-efficient methods for reporting on forest degradation on a large scale. The present case study analyzed high-resolution active remote sensing data to determine its suitability for reporting on forest degradation within the scope of REDD+. In the process it developed a method involving TerraSAR-X data to detect patterns of selective logging. Then, based on an accuracy assessment, it identified and quantified the influences of three stand characteristics, i.e. aboveground tree biomass, tree crown area, and social position and dominance, on the reliability of the developed method. Finally, the study demonstrates how the developed method could be implemented into the setup of an operational, robust, and transparent MRV-system. The study proved that space-born RADAR can be used for monitoring patterns of forest degradation in tropical moist forests. Combined with appropriate methods, it enables the collection of unbiased activity data and thereby serves as a suitable tool for reporting on forest degradation within the scope of REDD+. |
URL: | https://ediss.sub.uni-hamburg.de/handle/ediss/4932 | URN: | urn:nbn:de:gbv:18-62018 | Dokumenttyp: | Dissertation | Betreuer*in: | Köhl, Michael (Prof. Dr.) |
Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen |
Dateien zu dieser Ressource:
Datei | Beschreibung | Prüfsumme | Größe | Format | |
---|---|---|---|---|---|
Dissertation.pdf | 5a60126b73057a0915949f559d04d8f5 | 7.77 MB | Adobe PDF | Öffnen/Anzeigen | |
All_extracted_trees_AGB-CrownArea-SocPositionDom.xls.zip | 784191c4f43e6ce9d875d95bf5cb79a6 | 176.74 kB | Unknown | Öffnen/Anzeigen |
Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.
Info
Seitenansichten
711
Letzte Woche
Letzten Monat
geprüft am 01.04.2025
Download(s)
301
Letzte Woche
Letzten Monat
geprüft am 01.04.2025
Werkzeuge