
Titel: | Data Assimilation and Extremes in a Conceptual Atmospheric Model | Sonstige Titel: | Datenassimilation und Extremwerte in einem konzeptionellen Atmosphärenmodell | Sprache: | Englisch | Autor*in: | Hu, Guannan | Schlagwörter: | Data Assimilation; Extreme Value Theory; Chaotic Dynamical System | GND-Schlagwörter: | Datenassimilation Extremwert |
Erscheinungsdatum: | 2019 | Tag der mündlichen Prüfung: | 2019-05-07 | Zusammenfassung: | This thesis explores data assimilation problems in technical aspects and analyzes the extreme value statistics in conceptual models. The three issues that this thesis mainly addresses are described in the following paragraphs. The first part of this thesis investigates several data assimilation problems in a multi-scale system: 1) the role of model error in data assimilation, particularly the model error arising from unresolved scales; 2) the influence of time-scale separation between two scales on the skill of the data assimilation methods; 3) the optimal spatial and temporal distributions of observations when given a limited number of observations; and 4) the method using information from climatology to improve the estimation of the background error covariance computed from ensemble forecasts. Related to these problems the major findings are: 1) a third-order autoregressive process improves over a first-order autoregressive process in the stochastic parameterization schemes used to mitigate the model error from unresolved scales, especially for the system with a large time-scale separation; 2) as the time-scale separation increases, assimilating observations to small-scale variables has less and less influence on the forecasts of large-scale variables; 3) the accuracy of analysis, an optimal estimate of system state created by data assimilation, may linearly correlate to the model parameter error; 4) widely scattered and time-varying observations improve the performance of the data assimilation methods; and 5) using observations to select analogous model states from climatology contributes to the estimation of background error covariance. The second part of this thesis analyzes the extreme value statistics in a modified model of the system used in the first part. The main goal is to examine the effects of the subgrid-scale parametrization on the extreme value statistics. The extreme value theory (EVT) is adopted to analyze the extremes; the extreme value statistics can be represented by the parameters from EVT. The results show that parametrised models give different EVT parameters than the perfect model, and the parametrised models produce more extremes and these extremes have larger magnitudes. The return time of the extremes of a same magnitude is apparently shorter in the parametrised models than in the perfect model. Additionally, physically-based parametrization schemes perform better than empirical parametrization schemes in terms of capturing the extreme value statistics of the perfect model. In addition to the main goal of this part, we also examine the asymptotic convergence of the shape parameter, one of the EVT parameters, to the theoretical value computed by the partial dimensions of the attractor of the perfect model. The third part of this thesis addresses an important research question: whether current data assimilation schemes can reproduce extreme events in analysis fields and how skillful they are in forecasting them. To our knowledge, this topic has so far not been widely or systematically investigated. We examine the utility of two commonly used data assimilation schemes for extremes in a conceptual atmospheric model. The two schemes are the Ensemble Kalman Filter (EnKF) and the four-dimensional variational method (4D-Var), belonging to two different categories of data assimilation schemes. We evaluate their performance by first examining whether analysis captures the extreme value statistics of the control simulation. Second, we examine whether the forecasts generated from the analysis can well predict the extremes occurring in the control simulation. The results indicate that the two data assimilation methods are beneficial for the prediction of extreme events, especially when compared with a rudimentary data assimilation scheme which just imputes observations where they are available. Moreover, the EnKF is more accurate than the 4D-Var in estimating extremes, while the 4D-Var produces better deterministic forecasts of extremes. However, we can take advantage of the ensemble forecasts required for the implementation of the EnKF and convert them into probabilistic forecasts, which improve over the deterministic forecasts. Diese Arbeit untersucht Datenassimilation unter technischen Gesichtspunkten und analysiert die Extremwerte in konzeptionellen Modellen. Die drei Themen, auf die sich diese Dissertation hauptsächlich konzentriert, werden in den folgenden Abschnitten beschrieben. Der erste Teil dieser Arbeit untersucht mehrere Probleme der Datenassimilation in einem Multi-skalen-System: 1) die Rolle des Modellfehlers in der Datenassim- ilation, insbesondere der Modellfehler sich ergebend aus den nicht aufgelösten Skalen; 2) der Einfluss der zeitlichen Skalentrennung auf die Ausführung der Verfahren der Datenassimilation; 3) die optimale räumliche und zeitliche Verteilung der Beobachtungen bei einer begrenzten Anzahl von Beobachtungen; und 4) das Verfahren unter Verwendung von Informationen aus der Klimatologie, um die Schätzung der Hintergrundfehlerkovarianzen zu verbessern, welche mittels Ensembleprognosen berechnet wurden. Mit diesen Problemen verbunden sind die wichtigsten Erkenntnisse wie folgt: 1) Ein autoregressiver Prozess dritter Ordnung verbessert sich gegenüber einem autoregressiven Prozess erster Ordnung in den stochastischen Parametrisierungsschemata, die zum Abmildern des Modellfehlers sich ergebend aus den nicht aufgelösten Skalen verwendet werden, insbesondere für das System mit einer großen zeitlichen Skalentrennung; 2) Mit zunehmender zeitlicher Skalentrennung hat die Assimilation von Beobachtungen kleinskaliger Variablen immer weniger Einfluss auf die Vorhersagen von großskaligen Variablen; 3) die Genauigkeit der Analyse, eine optimale Schätzung des durch die Datenas- similation erzeugten Systemzustands, kann linear mit dem Modellparameterfehler korrelieren; 4) breit gestreute und zeitveränderliche Beobachtungen verbessern die Leistung der Methoden zur Datenassimilation; und 5) Das Verwenden von Beobachtungen zur Auswahl analoger Modellzustände aus der Klimatologie trägt zur Abschätzung der Hintergrundfehlerkovarianzen bei. Im zweiten Teil dieser Arbeit werden die Extremwerte in einem modifizierten Modell des im ersten Teil verwendeten Systems analysiert. Das Hauptziel besteht darin, die Auswirkungen der subskaligen Parametrisierung auf die Extremw- ertstatistik zu untersuchen. Die Extremwerttheorie wird angewendet, um die Extremwerte zu analysieren. Die Extremwertstatistik kann durch Parameter der Extremwerttheorie dargestellt werden. Die Ergebnisse zeigen, dass die parametrisierten Modelle andere Parameterwerte von Extremwerttheorie liefern als das perfekte Modell. Die parametrisierten Modelle erzeugen mehr Extreme und diese Extreme sind höher. Die Rückkehrzeit der Extremwerte derselben Größenordnung ist bei den parametrisierten Modellen anscheinend kürzer als bei dem perfekten Modell. Darüber hinaus ist die physikalische Parametrisierung hinsichtlich der Wiedergabe der Extremwertstatistiken des perfekten Modells genauer als die empirische Parametrisierung. Neben dem Hauptziel dieses Teils untersuchen wir auch die asymptotische Konvergenz des Formparameters, eines der Parameter von Extremwerttheorie, mit dem theoretischen Wert, der basierend auf Teildimensionen des Attraktors des perfekten Modells berechnet wird. Im dritten Teil dieser Dissertation beschäftigen wir uns mit einer wichtigen Forschungsfrage: können aktuelle Datenassimilationsverfahren extreme Ereignisse in Analysebereichen reproduzieren, und wie genau können sie diese vorhersagen?. Nach unserer Kenntnis ist dieses Thema bisher nicht umfassend oder systematisch untersucht worden. Wir untersuchen den Nutzen von zwei häufig verwendeten Datenassimilationsverfahren für Extremwerte in einem konzeptionellen atmo- sphärischen Modell. Die zwei Verfahren sind der Ensemble Kalman Filter (EnKF) und die vierdimensionale Variationsmethode (4D-Var), die zu zwei verschiedenen Kategorien von Datenassimilationsverfahren gehören. Wir bewerten ihre Leis- tung, indem wir zunächst prüfen, ob die Analyse die Extremwertstatistiken der Kontrollsimulation erfasst. Zweitens untersuchen wir, ob die aus den Analysen generierten Vorhersagen die Extremwerte der Kontrollsimulation wiedergeben können. Die Ergebnisse zeigen, dass die beiden Datenassimilationsverfahren für die Vorhersage von Extremereignissen nützlich sind, insbesondere im Vergleich zu einem rudimentären Datenassimilationsverfahre, das Beobachtungen nur da berücksichtigt, wo sie verfügbar sind. Darüber hinaus ist der EnKF bei der Schätzung der Extremwerte genauer als die 4D-Var, während die 4D-Var bessere deterministische Vorhersagen für Extremwerte liefert. Wir können jedoch den EnKF nutzen und Ensembleprognosen in Wahrscheinlichkeitsprognosen umwandeln, die im Vergleich zu den deterministischen Prognosen genauer sind. |
URL: | https://ediss.sub.uni-hamburg.de/handle/ediss/8183 | URN: | urn:nbn:de:gbv:18-97695 | Dokumenttyp: | Dissertation | Betreuer*in: | Franzke, Christian (PD Dr.) |
Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen |
Dateien zu dieser Ressource:
Datei | Beschreibung | Prüfsumme | Größe | Format | |
---|---|---|---|---|---|
Dissertation.pdf | 478377c8784dfdfbd86dd331f31d604e | 7.8 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.
Info
Seitenansichten
285
Letzte Woche
Letzten Monat
geprüft am 01.04.2025
Download(s)
154
Letzte Woche
Letzten Monat
geprüft am 01.04.2025
Werkzeuge