Titel: Integrable sigma models from affine Gaudin models
Sprache: Englisch
Autor*in: Bassi, Cristian
Erscheinungsdatum: 2021
Tag der mündlichen Prüfung: 2021-06-30
Zusammenfassung: 
In this thesis we describe recent results obtained in the area of integrable field theories. In particular, we present the construction of two new broad classes of integrable sigma models in the framework of affine Gaudin models. Firstly, we focus on integrable deformations of a class of theories defined on the direct product of N copies of a Lie group. More precisely, for N = 1 the corresponding models coincide with the Yang-Baxter or lambda-deformations of the principal chiral model, while for general N they consist of arbitrary combinations of these deformed models. We describe both the Hamiltonian and Lagrangian formulation of models with general N and give explicit expressions of their action and Lax connection. The second class of theories is defined on a coset of the direct product of N copies of a Lie group over some diagonal subgroup, generalising the well-known symmetric space sigma model corresponding to N = 1. Specifying the construction to the case of two copies of the group SU(2), we obtain a new three-parametric integrable sigma model on the manifold T^{1,1}. We comment on the connection of our results with the ones existing in the literature.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/9095
URN: urn:nbn:de:gbv:18-ediss-93728
Dokumenttyp: Dissertation
Betreuer*in: Arutyunov, Gleb
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
Dissertation_Cristian_Bassi.pdf2.92 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Info

Seitenansichten

39
Letzte Woche
Letzten Monat
geprüft am 01.08.2021

Download(s)

20
Letzte Woche
Letzten Monat
geprüft am 01.08.2021
Werkzeuge

Google ScholarTM

Prüfe