Titel: Rigid Convolution Structures
Sprache: Englisch
Autor*in: Gödicke, Jonte
Schlagwörter: Higher Segal Objects; Topological Field Theories
GND-Schlagwörter: MathematikGND
Monoidale KategorieGND
Unendlich-KategorieGND
Erscheinungsdatum: 2025-08-07
Tag der mündlichen Prüfung: 2025-07-31
Zusammenfassung: 
A monoidal category is called a convolution monoidal category if it arises from linearizing a 2-Segal space. The goal of this thesis is to study for which 2-Segal spaces the induced convolution monoidal category is a multi-fusion category.
With this aim, we show that multi-fusion categories admit an intrinsic description as rigid algebras in the symmetric monoidal 2-category of C-linear additive categories. We use this observation to define, by analogy, a derived version of a multi-fusion category as a rigid algebra in the symmetric monoidal (infinity,2)-category of stable infinity-categories. We show that examples of these arise as derived categories of multi-fusion categories and as categories of modules over smooth and proper E2-algebras.
Afterward, we show that rigid algebras in the (infinity, 2)-category of spans are precisely given by those 2-Segal objects that are Čech-nerves. Together with our previous result, we use this to provide an answer to our initial question. To prove this result, we provide a description of bimodules in the infinity-category of spans as birelative 2-Segal objects. Furthermore, we introduce a notion of morphism between birelative 2-Segal objects that extends this classification to an equivalence of infinity-categories.
We use this classification to construct examples of convolution monoidal structures that form derived multi-fusion categories and discuss some aspects of the associated fully extended TFTs. We finish by studying Grothendieck–Verdier-structures on convolution monoidal infinity-categories and by comparing them with rigid dualities.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/11876
URN: urn:nbn:de:gbv:18-ediss-130763
Dokumenttyp: Dissertation
Betreuer*in: Dyckerhoff, Tobias
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Prüfsumme GrößeFormat  
Dissertation.pdffa6091c7b62921676dd11ccd2036c1bb1.89 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe