Titel: | Mapping class group actions and their applications to 3D gravity | Sprache: | Englisch | Autor*in: | Romaidis, Iordanis | Schlagwörter: | Mapping class group; Defects; Quantum gravity; TQFT | GND-Schlagwörter: | DarstellungstheorieGND QuantengravitationGND Topologische QuantenfeldtheorieGND Mathematische PhysikGND Monoidale KategorieGND |
Erscheinungsdatum: | 2022 | Tag der mündlichen Prüfung: | 2022-10-04 | Zusammenfassung: | In this thesis we study mapping class group actions of the three-dimensional Reshetikhin-Turaev topological quantum field theory motivated by questions in three-dimensional quantum gravity where mapping class group averages appear as candidates for gravity partition functions. One of the main results is a bulk-boundary correspondence between mapping class group averages and a rational conformal field theory whose chiral mapping class group representations are irreducible and obey a finiteness property. As primary examples we find that Ising-type modular fusion categories and their Reshetikhin-Turaev topological quantum field theories are characterised by these properties. Finally, for a given modular fusion category C we show that if the mapping class group representation on every surface without marked points is irreducible then there is a unique indecomposable C-module category with module trace, namely C itself. Such module categories describe surface defects in three-dimensional Reshetikhin-Turaev topological quantum field theories. This links irreducibility of mapping class group representations and absence of non-trivial surface defects. |
URL: | https://ediss.sub.uni-hamburg.de/handle/ediss/9945 | URN: | urn:nbn:de:gbv:18-ediss-104893 | Dokumenttyp: | Dissertation | Betreuer*in: | Runkel, Ingo |
Enthalten in den Sammlungen: | Elektronische Dissertationen und Habilitationen |
Dateien zu dieser Ressource:
Datei | Beschreibung | Prüfsumme | Größe | Format | |
---|---|---|---|---|---|
Romaidis-Dissertation-Revised.pdf | 0ae894ec71b6a2fafb855ef7f4c8406a | 985.04 kB | Adobe PDF | Öffnen/Anzeigen |
Info
Seitenansichten
330
Letzte Woche
Letzten Monat
geprüft am 21.01.2025
Download(s)
234
Letzte Woche
Letzten Monat
geprüft am 21.01.2025
Werkzeuge